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rom investigations on cyanogen, diacetylene and dimethyldiacetylene by
Felectron diffraction Pauling, Springall and Palmer have concluded that
the C—C single bond in these compounds has a considerable amount of double
bond characterl. It seems worth while to try these results confirmed from |
calculation of the potential functions, and in the case of C,N, where Pauling
et al. find 40 per cent double bond character such have already been carried
out on basis of the valence force system 274. However, it is to be expected that
this can only give a rough approximation and that a more general type of
potential function including ‘“‘cross terms” should be applied. But even in the
simple case of C,N, not enough vibration frequencies can be observed in the
infrared and Raman spectra to make a calculation of the complete harmonic
potential function possible. This difficulty could be overcome by considering
also frequencies from the isotopic molecule C2C3N,* which constitutes about
2.2 per cent of natural cyanogen. In fact, by taking the Raman spectrum
with a spectrograph of high resolving power and dispersion we have been able
to detect two frequencies one of which can be ascribed to this molecule. In the
following will be given the results of new electron diffraction experiments on
cyanogen, and of a reinvestigation of the Raman spectrum including depelari-
zation measurements of the two strongest lines. Finally, using data also from
the infrared spectrum obtained by others ¢ the force constants in the harmonic
potential function are calculated and the nature of the valence force field is
discussed.
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EXPERIMENTAL

Preparation. The cyanogen used for these experiments was prepared according to
Kistiakowsky 8 and A. Klemenc ® by dripping a concentrated solution of potassium
cyanide into a concentrated solution of cupric sulphate under reduced pressure. The gas
avolved was purified by repeated distillations and finally dried over P,O;.

Electron diffraction *. Electron diffraction photographs were taken of C,N, by the
rotating sector method. From the microphotometer traces of four plates the radial

distribution function # was .obtained by a procedure previously described in this
journal 7. This curve had very pronounced maxima at r = 1.16 A, » = 2.53 A and
r = 3.68 A corresponding to a linear model with distances: C—C: 1.38 A, N=C:
1.15 A which is in complete agreement with the investigations of Pauling et all The
probable error is about + 0.02 A.

Raman spectrum. The apparatus and methods for obtaining the Raman spectrum
were those usually employed in this laboratory and which have been described elsewhere 8.
The observed frequencies are given in Table 1 together with their visually estimated
intensity and comments on the general appearance of some of the Raman lines.

As far as we know the Raman lines 521.4 cm 1, 561.4 cm™1, 841 cm ! and 2 298.4 cm™
have not been observed before 711, On the other hand we have not been able to detect
the very weak lines 304 cm™, 696 cm™,1 102cm ! and 1 386 em™! found by Reitz and
Sabathy in their investigation of cyanogen 1.

A one prism spectrograph of high light-gathering power (camera lens f 1: 2.5) was
used for polarization measurements. The Raman tube was irradiated with approximately
parallel light from two Philip’s HO 2 000 Hg-lamps. By aid of a Rochon prism the
scattered light was split into two beams with the polarization planes at right angles.
In this way we got two separated pictures on the slit of the spectrograph and hence two
spectra on the photographic plate. On the same plate and with the same set up were

Table 1.

Frequency in cm™! Intensity Remarks
c. 240 weak Broad diffuse
c. 475 very weak Diffuse

507.2 strong Somewhat diffuse
521.4 weak
561.4 very weak
750 very weak
841 weak
850.6 medium Sharp
1028.56 weak Sharp
2 298.4 weak
2 328.5 very strong Sharp

* One of us (C. K. M.) is very indebted to Professor O. Hassel and his staff for a stay at the
Physical-Chemical Laboratory of the University at Oslo during which this part of the work was
done.



CYANOGEN . 727

N
+>
[

N
-~

S
o

N
o
©

"
&~

—
h—ji
-
3
N
[P S

Fig. 1. Vibrational energy level diagram
of the cyanogen molecule. The numbering :
of the different transitions refer to Table 2. ]

next photographed the two analogous spectra from a very pure CCl,-sample and finally
without the Rochon prism, the continuous spectrum of the hot filament of a small lamp
with a Pt-step-filter before the slit. The plates were photometered by aid of a photo-
electric microphotometer. The adjacent continuous step spectra photometered at the
wave length of the Raman line considered gave the relation between blackening and
energy. On basis of this and from the microphotometer traces of the Raman lines apparent
depolarization degrees were calculated for C,N, and CCl,. Finally, using the known values
for CCl, as standards 12 the true depolarizations were obtained. (It may be added here
that the spectrograph slit was so wide that the heights of the maxima of the photometer
curves could serve directly as a measure for the energy.) The mean values from four
plates gave for:

vy = 807.2 em™, ¢ = 0.83 and »; = 2 328.5 em™, ¢ = 0.33

As the error is estimated to about 5 per cent it is concluded that #, is depolarized. The
line v, = 850.6 cm™1 was too weak for quantitative measurements to be made. However,
it seemed to be polarized which one would also conclude from the sharpness of this line.

ASSIGNMENT OF FREQUENCIES

From -classical stereocliemistry as well as from considerations of the
elotronic structure the molecule is expected to be linear and symmetric. As
mentioned above, this is confirmed by the electron-diffraction measurements.
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' 2 3 4 symmetric CyNy-molecule. The four atoms
placed along the X-axis are numbered from 1
to 4 and the dimensions of the molecule is

given by the distances D and d.
Table 2. Raman and infrared frequencies of CyN,.
Frequency | Activity " Inter- S Sele::;oion
v No. in cm™ observed Femarks pretation ymmetry rwe
activity

1 c. 240 I—-R (R) a-band vg B, I-R (o)

2 c. 475 R 2vg Aygs Aoy By R (pol)

3 507.2 R depol. Vs 1e R (dep)

4 521.4 R 24—y By, By, R (dep)

5 561.4 R 2v;— 20 Allg, Azg’ Ezg R (pol)

6 618 I-R o-band Vy—v 14 I-R (9)

7 732 I-R

8 750 R } n-band vyt+vs Ay Aoy By I—-R (7)

9 841 R (vg +v5)—vy5 | Ayg, Aoy, Bgg R (pol)
10 850.6 R polarized vy A *) R (pol)
11 1028.5 R 2v, Ay Ay, By, R (pol)
12 2 092 I-R ¢-band v —v E,, I-R (o)

13 2 149 I-R n-band Vg Agy I-R (n)
14 2 298.4 R v, isotope Coon 44 R (pol)
15 2 328.5 R (polarized) vy Ay R (pol)
16 2 562 I-R g-band v+ Ei. I-R (0)
17 2 662 I-R g-band vg+v, E,, I-R (o)

Hence, C,N, has the symmetry D _,. From group-theoretical considerations 13

it follows that there are 3 non-degenerate fundamental vibrations, two of
which are symmetric (4,,) and one antisymmetric (4,,) with respect to the
inversion, further 2 degenerate vibrations being respectively symmetric (&,,)
and antisymmetric (#,,). The five modes of vibration are shown schematically
in Fig. 3. According to selection rules all the antisymmetric fundamentals

* Fermi-resonance between the two A4y, components causes an enhanced activity of the
overtone, 2 v,, which appears as a Raman-line of medium strength.
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Fig. 3. Vibrational modes of the linear
C,Ny-molecule. The symmetry coordinates
as well as the symmetry species are given
for each normal wvibration. Only one com- 5§
ponents of the degenerate vibrations is shown.
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are infrared active while the symmetric ones are Raman active. Furthermore,
A,, vibrations give polarized Raman lines (¢ < 6/7), all others depolarized
(e = 6/7).

The problem of assigning the observed frequencies to definite modes of
vibration has caused some discussion in the literature 2, but must now be
congidered as settled. We shall therefore not go into any detail here. The
assignment given in Table 2 (and Fig. 1) is in essential agreement with that
given in Herzberg’s book 2. Two of the new Raman-lines 521.4 and 561.4 cm™
can uncompelled be explained as the difference tones »,—2», and 2y,—2v,.
Of the remaining new lines 2 298.4 cm™ is undoubtedly due to », of the iso-
topic molecule N=C12—CB=N. As well the shift in frequency as the inten-
sity ratio (I (2328.5)/I(2 298.4)) is of the right order of magnitude. Further-
more, the line is sharp (strongly polarized) as should be expected. The remain-
ing 841 em™ line is tentatively given the assignment »,—(», + ¥;), because its
intensity seems to be too high for interpreting it as an isotopic line. Below
we are showing that neither its frequency is compatible with this assignment.

THE POTENTIAL FUNCTION OF THE C,N, MOLECULE

The general harmonic potential function for vibrations belonging to the
different symmetry classes may be formulated as:

4,, (v, and ) AVy = ayy S} + apS; + 20158,8,
As, (v5) av, = ‘1338§

Elg (va) AV = a,S; + aesSi

E,, (v5) AV, = ag S5 + a,,5;
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where a1, Ggg. . .. .. @, are force constants and §;, S;. . ... S, the geometric
symmetry coordinates. These are linear combinations of the atomic displace-
ment coordinates with the property that they form basis for irreducible repre-
sentations of the symmetry group and are independent of translations and
rotations of the molecule. The symmetry coordinates for a simple molecule as
CyN, can be found by inspection (Fig. 3). The same coordinates may also be
used for any isotopic species of this molecule, because the interatomic distances
and the potential function are unchanged.

Linear vibrations (Symmetry classes 4,, and A4,,). Numbering
the atoms as indicated in Fig. 2. we choose:

S, = x—=x,, Sy = ¥;—x; and 83 = ¥,—xy—r3 + 7,

In order to exclude translation in the x-direction the following relation must be
satisfied:
My + Moy + MyXy + Mgy = 0

Here m, is the mass of the ¢-th atom. This enables us to express the displace-
ment coordinates as linear combinations of the symmetry coordinates:

7y (2M) = (my + mg + 2my)S;—(ma—my)S, + (mg + my)Sy

2y (2M) = —(my—my)Sy + (my + 2mg + my)Sy—(my + my)Sy (1)
x3(2M) = —(my—my)S;—(m; + 2my + my)Sy—(my + my)Sy

2y(2M) = —(2my + Mg + M3)S—(my—myg)Sy + (Mg + M4)S,

(M = m; + mg + mg + m,)

Lagrange’s equations with the symmetry coordinates as generalized coordi-

nates are:
d AT 24V 0
dt( a8 )+ Fr

where AT is the kinetic and AV the potential energy. Instead of inserting (1)
into the kinetic energy function:

24T = myi] + myiy + Mgy + My
we calculate the first member of Lagrange’s equation from

AT %;
o = 28



CYANOGEN . 731

By using this procedure it is possible to set up the equations of motion for each
symmetry class separately, considering only those symmetry coordinates which
belong to that particular symmetry class.

In this case we want to determine the four “linear’” force constants: a,,
Qg, @5 and agy. This is possible because we in addition to the three funda-
mentals (v, , and »g) in C,N, now also know the frequency of one of the funda-
mentals (», (isot.)) in C2CBN}*, Because the symmetry of this molecule is
lower (Cv) all the linear fundamentals belong to the same symmetry class
(Al) Hence we cannot separate the variables §,, S; and S;. We get the follow-
ing equations of motion:

{(m1+m‘l) (ml+m4)+4mlm4}Sl——(m2-—-m3) (my—mg)Sy+- [ (my—my)
(my, + mg) Sy + 8a, M8, + 8ay,S, = 0
—(my—my) (my—mg)8;+((my+my) (myt-ms)+-4 mzma}sz—[(mn_ma)
(my+my)Ss + 80121@5'1 + BapMS, =0 (2)
(mg+myg) (my—mg)8y— (my+my) (my—mg)Sy+(my+my) (my+mg)Ss
+ 8ay,MS; =0
Trying solutions of the type S; = 4,e#** and requiring non-trivial solutions
we get the secular equation:

2Mau—-{(m1+m4)(m2+m3)+4m1m4}n 2 Mayy+ (mg—mg) (my—my)x
—(my—m,)(mg—+-mg)x

2 Mayy+ (my—my)(my—mg)e 2 Mag—{ (my--my)(my-Fms)~+-mamg) =0
(mg—mg)(my-+my)x

— (my—my)(my—+mg)x (my+my)(mg—myg)x
2Magg—(my+my)(mg+mglx | (3)

where x = n%%? (¢ is the velocity of light).

The above equations will of course also be valid for the symmetric molecule
C3?N3* when the proper values are inserted for the atomic masses. The secular
equation (3) then reduces to:

Qy—My% (1209 0
@z | Ggg— Mg 0 9mm =0 (4)
0 0 gz — ——-J;[——2 x

which splits up into the two equations:

(‘111“22—“32)'—“("7'1“22 + myay;) + %*mymy = 0 (5)
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(TZO roots, x; and x,, corresponding to » and », of symmetry class 4,,)
an

gy« M—2mymgxz = 0 (6)

(%3 corresponds to »3 of symmetry class 4,,.).
From (4) we obtain the following relations:

2
Ay 00— Q2 = My MKy (7)
and

AyyMy + Gggmy = MMy (%, + %) (8)

Inserting the following numerical values:

my = m, = 14.0075, my = 12.0038, mg = 13.0075, M = 53.0263,

N = 6.0228. 108, ¢ = 3.101°, » = 2 328.5, », = 850.6, v, = 2 149 and
v,(isot.) = 2 298. 4 into (6), (7), (8) and the evaluated determinant (3) we
calculate:

a; =  3.920 - 10° dyne-cm™
7.520 - 10% dyne-cm™
a5 = 4 3.890 - 105 dyne-cm™
agg =  4.402 . 10% dyne-cm™

I

The ambiguity caused by the -+ sign for a,, will be discussed below.
In these calculations we have considered the structure of cyanogen to be
N=C—C=N. Now, it is a possibility that the carbon and nitrogen atoms

should be interchanged (though the isotopic atom should still be a carbon
R R
atom): C=N-—-N=C. This means that we have to interchange the masses

m, and m,, mg and m, in our calculations. But if we do so it is easily seen from
equations (3), (4), (6), (7) and (8) that we get exactly the same calculations as before,
only that a,, and ay have been interchanged.

We might next try whether the observed Raman line » = 841 ecm™ should
be an isotope line corresponding to v, = 850.6 cm™. By introducing the nu-
merical values for the force constants into (3) we calculate:

m(isot.) = 846 cm™

for the isotopic molecule C1?C13N}%. The difference between this value and the
observed 841 frequency is so large that we believe it to be outside as well
experimental error as uncertainty in the calculation. This supports our con-
clusion, mentioned above that the 841 c¢m™ line must be assigned to the
Ci2N3* molecule.
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Non-linear vibrations. These can be treated in a way quite
analogous to the linear vibrations. We shall here only state the results ob-
tained for the symmetric molecule C3*N}'.

Symmetry class E,. vy = 507.2 cm™

mymy

Q= Ogg = 4 %y ————-
’ mg + my (2)

Inserting numerical values,d = 0.69 A and D = 1.84 A (cp. Fig. 2), we cal-

culate:
Gy = Qgg = 0.229 - 105 dyne.cm™

Symmetry class E,, - vy = 240 cm™

MM
M

Qg = Qg7 = 2 X5

giving
Qg5 = Gy = 0.055 - 105 dyne-cm™

DISCUSSION

In order to get a better understanding of what is the physical significance
of the potential function it may be helpful to consider the forces called into
action when we give the molecule certain deformations. To this purpose we
choose the following:

1) atom 1 is given a small displacement, Az,

2) atoms 1 and 2 are both given the same displacement, 4z, and

3) atom 2 alone is given the displacement Az,
while all other atoms are kept fixed in their original positions of equilibrium.

For this calculation we express the part of the potential function involving
only linear vibrations in cartesian coordinates:

av = (“11‘*‘%3)(‘”24‘“’3) + (azz'l‘aaa)(xg'l‘xg) + 2(a15—0g3) (@12 +25%,) —
2(@atA33) (%175 +25%) + 2(@g5—Cgp)Tay + 2(Bgg—ay, )01,

A certain displacement, 4z, from the equilibrium position of one or more
of the atoms will produce a force on the i-th atom: '

k== (52) (%), e
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The “restoring coefficients’, defined as dK(¢)/dx, are given in the following
Table 3, while the numerical values of the forces are given in Table 4 for
the two different models of the molecule and with a,, as well negative as
positive.

Table 3. Restoring coefficients of the single atoms for special atomic displacements.

Atom K, Ky Ky
1 —2(ay; + agg) | —2(ay + ayy) | —2(ayy — agy)
2 —2(ayy — agg) —2(agy + a15) | —2(agy + agg)
3 2(a)y + ag3) 2agy + a1g) | —2(agg — ayy)
4 2(ay; — ag3) 2(ayy + ayy) 2(ayy + agg)

Table 4. Forces acting on single atoms in CyN, for special atomic displacements Ax, unit:
105 dyne.

K, K, K,
Model | Atom

@15 DOE. | ayy POS. | aj, Meg. | Gy POS. | Gy DEE. | Ay POS.

—16.644x| —16.64 4| —0.064x| —15.6242| 16.584x 1.02 4z
16.58 42 1.024z| — 7.26 4x| —22.82 4x | —23.84 Az | —23.84 Az
1.024x| 16.58 Ax 7.2642) 22.824x 6.24 Ax 6.24 Ax

— 0.964x | — 0.964x 0.06 42| 15.624x 1.02 4= 16.58 4«

N:

C—C=N
[ S

—23.84 4z —23.844x| —7.264x| 22.824«x 16.58 Ax 1.02 4z
16.58 Ax 1.0242| —0.06 4z —15.624x| —16.64 4x | —16.64 Az
1.02 4z 16.58 4z 0.064x 15.624x 0.96 Ax 0.96 A=
6.24 Ax 6.24 Ax 7.26 Ax| —22.82 Ax 1.02 42 16.58 Ax

-+ o+
C=N—-N=C
W N

By inspection of the figures in Table 4 it is easily seen that the only physic-
ally reasonable solution ts the N = C—C = N model with a,, negative, leading
to the values given in column 1, 3 and 5, upper part. However, the other
possibilities are also quite interesting, if we try to interpret what they mean
physically. With a,, negative and the CNNC model we see that there is a
strong interaction between the C and N atoms as well as between the C atoms,
but none between the N atoms; this must mean that there is a bond between
the C atoms from one end of the molecule to the other while the adjacent N
atoms are not bonded to one another. Similarly, the change of sign of ay,
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(from —to+-), which is mathematically equivalent to interchanging the atoms
2 and 3, physically must be interpreted as giving a strong interaction corre-
sponding to a triple bond between the atoms 1 and 3 and between 2 and 4.
We see, in fact, that the calculations, being performed without paying any
attention to the possible distribution of the carbon and nitrogen atoms between
the places 1, 2, 3 and 4, in every case lead to the same dynamical formula for the
molecule. This is because the physical interpretation of the force constants —
or the restoring coefficients — is independent of the numbering of the atoms
and hence always will show between which atoms there is a single resp. a
triple bond or no bonding at all.

Table 4 shows furthermore that there is quite a strong interaction between
atom 1 and the atoms 3 and 4 in our selected NCCN model, the restoring
coefficients being - resp. — ca. 1. 105 dyne.cm™. (Of course, for symmetry
reasons, there is a corresponding interaction between 4 and the atoms 1 and
2.) This is, as we will show in a following paper, what is to be expected from
the molecular orbital theory.

The restoring coefficients play the role of force constants and we may take
as characteristic force constant for the C=N bond: K. = K; (2) =
16.6 - 10° dyne.cm™ and for the C—C bond: K, (2) = 7.26. 10° dyne.cm™.,
However, in the latter value is included a contribution of 1.02 - 105 dyne.cm™
due to interaction between 2 and 4. Hence, if we want to get the force constant
for the ‘“‘pure’” C—C bond we must subtract this amount and get

Koo = Ky (2)eory. = 6.24 - 105 dyne.cm™.

Let us next apply different empirical rules connecting the interatomic
distances and the corresponding characteristic force constants:

Badger’s rule!®: K(r—a)® = 1.86. 10°
Clark’s » 3 K. = 1.2668
Linnet-Thompson’s rule 3: K. =1.316

The two first relations are valid for diatomic molecules while the last should
apply to polyatomic molecules. Therefore, one would expect to get best results
with the corrected K. values when using Badger’s or Clark’s rule while
Linnet-Thompson’s formula should be applicable to the ‘‘raw’ uncorrected
value. The following Table 5 shows that this is so.

Previous calculations based on the valence force system have given 2
Koy = 17.6- 105 dyne.cm™ and K. .= 5.22.105 dyne.cm™ although
Linnet and Thompson 3 for the same constants find 17.5 and 6.69 . 105 dyne.
em™, This is more or less what one would expect from consideration of the

2
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‘“‘valence structure” of C,N,. However, a simple and more exact relation seems
to exist between the restoring coefficients as defined above and the bond orders
as calculated by the LCAO-method. This will be discussed in a following

paper.

Table 5. Interatomic distances in A as calculated from the force constants in 105 dyne-cm-1
according to different empirical rules.

Interatomic distances de=x dec | Fdec

Force constant in 105 dyne.cm™1 16.6 7.26 6.24

Badger 1.16 1.32 1.35

Clark 1.15 1.33 1.37

Linnet-Thompson 1.17 1.38 1.42

Observed value 1.15 1.38 1.38
. SUMMARY

Investigation of C,N, by electron diffraction using the rotating sector
method confirms the results obtained by Pauling ef al. The Raman spectrum
has been reinvestigated and four new lines detected, one of which is assigned
to the isotopic molecule NCCN. On the basis of measured Raman frequencies
and one frequency taken from the infrared absorption spectrum the complete
harmonic potential function has been calculated. An interpretation of the
physical significance of the force constants is given. It is thereby shown that
the spectroscopic method unambigously leads to the configuration NCCN.
Different empirical rules giving the relation between force constants and bond
lengths are tested.
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