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he development of the X-ray diffraction methods for the investigation of the

structure of matter exhibits certain peculiarities which are rather striking.
The marked spots and sharp and well defined lines of the diagrams obtained from
crystalline substances attracted, quite naturally, the interest of the scientists.
The' immediate result of this was the foundation of X-ray crystallography,
which, in its turn, has furnished a vast amount of information concerning the
constitution and properties of solid crystalline substances.

As early as 1915, Debye! and Ehrenfest 2 independently postulated that
theoretically X-ray diagrams from non-crystalline substances should also pos-
sess a characteristic pattern from which certain conclusions concerning the
distribution of the electrons in the substances in question could be drawn.
However,” little attention was paid to these results, and the possibility it
offered of investigating the structure of liquids and other non-crystalline
substances was not considered in the first decades.

The reason for this was certainly not lack of interest in the structure of
liquids. It was probably due to the fact that the diffraction pattern from
crystals was far more conspicuous to the naked eye than that produced by
liquids. For this reason the interpretation of the latter requires a more
advanced experimental technique.

The first attempt to determine the structure of a liquid by a Fourier-
synthesis from experimental X-ray intensity data was made in 1930 by
Debye and Menke 3. Their investigation of liquid mercury represents, in fact,
the first step towards a practical method for the determination of such struc-
tures. The small deviations between the results of Debye and Menke and
later investigators in this field are quite negligible.

The application of Fourier-synthesis to X-ray data from liquids was origin-
ally proposed by Zernicke and Prins ¢. Their method, in a somewhat modified
form, has been employed by Warren and Gingrich % and co-workers in their

1
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determinations of atomic distribution functions for a great number of liquid
elements and other liquids. Different authors have also reported the deter-
mination of atomic distribution functions for a series of more complicated
substances by this method.

A structural interpretation of the atomic distribution functions has also
been attempted in several cases, but with limited success, and Gingrich writes
in a survey of the diffraction of X-rays by liquid elements ¢: ‘These atomic
distribution curves represent the time-averaged atomic environment about
any given atom within the liquid, but this environment is neither permanent,
as in a crystal, nor random, as in a gas, and hence no simpler description of
liquid structures can mow be given to supply the same information.

A comparison of the atomic distribution functions for groups of similar
substances seems to indicate that this statement is correct. On the other hand,
such a conclusion seems rather strange from a physical point of view, especially
as regards the structures of molten metals and liquid gases.

In recent years certain types of systematic errors which may enter into the
Fourier-synthesis of the atomic distribution functions for liquids have been
reported 7, and such errors may well account for the difficulty of a structural
interpretation of the distribution functions. Any discussion of these problems
must be based on theoretical expressions for the intensity of the coherent and
incoherent scattering of X-rays by a liquid. It will therefore be necessary to
give some basic details of the scattering theory for monochromatic X-rays.

= ,
II. THE SCATTERING OF X-RAYS BY A LIQUID

The intensity of the radiation scattered coherently by a system of electrons,
when a parallel beam of X-rays of wavelength 4 is falling on the system, may
be expressed by the formula 8:

[+ o]
e, 1+4cos®26 sin sr

I(s) is the intensity of the radiation scattered coherently in a given direc-
tion, I, the intensity of the primary beam, ¢ and pu the charge and mass of an
electron, ¢ the velocity of light, R the distance from the center of the electron
system to the point where the intensity is observed (this distance must be
great compared with the extent of the system), 2 @ the angle between the in-
cident beam and the direction in which the intensity is observed, s is equal to

%zt s;n ?, r the distances occurring in the electron system, and o(r) dr is the
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probability of finding electrons in the system at a mutual distance between
r and r + dr.
Applying the Fourier integral theorem we may write:

o ¢]
4 R?pct sI(s)
netl, 'o 14 cos’2@

or)y=r sin sr dr (2)

The function o¢(r) should, according to its definition, give maxima for
r-values corresponding to distances between greater densities of electrons in
the system in question.

For an electron system consisting of two atoms with spherical electron
distribution at a fixed mutual distance, the o(r)-function possesses only one
maximum, and this maximum is found at an r-value which is somewhat greater
than the distance between the nuclei. This shift of the maximum with relation
to the internuclear distance increases with decreasing distance. Its numerical
value will, however, in practice never exceed 0.005 A and may therefore, in
the case of liquids, for all practical purposes be neglected. It has been proved

or
that the positions of the maxima in the function 'Lr) correspond exactly to

the internuclear distances ®. This function has, however, the disadvantage that
the magnitude of maxima corresponding to the same two atoms is proportional

1
to - and accordingly decreases rapidly with increasing r-values.

The distribution function ¢(r) may be divided into terms in different ways.
The electron system in question may, for instance, consist of atoms which are
bound together to form molecules, and the molecules, in their turn, form still
larger aggregates. The distribution function o(r) for such a system must
contain, first of all, the sum of the distribution functions for all its component
atoms o,(r). Secondly it must contain the sum of the distribution functions
for all the molecules, the distance between electron densities in the same atom
being left out in the calculation of the molecular distribution functions
0,(7).

The distribution function for the whole system may thus be written:

0'(7') = Zat 0'“‘(7') + Zm Gm(r) + O'I(T) (3)

Where the term o,(r) results from all the inter molecular distances, 3. e.
distances between electron densities belonging to different molecules.
Introducing (3) in formula (1), leads to:
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el, 1+ 00322 o sin sr
I(S) —2_07-;3? [Zatf at(r) — - dr +

me ,,,(r) T —i— oy(r) sin o7 dr] (4)

sr

The term:

ely, 14 00522 0] f sin sr p
WEAR? a (6)

represents the intensity of the coherent scattering of one special atom or ion
and may be replaced by the expression:

e, 1-+cos’20
e R? 2

fa (6)

where f,, is the atomic scattering factor for the special atom or ion in question 0.

If the electron distribution of the system is altered during the exposure
time or if more than one system contributes to the scattering, then the inten-
sity of the total coherent scattering is represented by the weighted mean of the
scattering corresponding to the individual electron distributions in the system.
In that case the intensity may be expressed as:

©
el, 14 cos’20 f sin sr
I(S) = ,L264R2 : 9 : Zta’fo"(’r) P dr (7)

where the summation must be taken over all the systems or electron distri-
butions. a, is a factor equal to the probability of each individual distribution
and o,(r) is the electron distribution function corresponding to this special
electron distribution.

Formula (4) gives the intensity of the coherent scattering in a convenient
form for our purpose. It should be noted, however, that certain structural
problems may be simplified by splitting up the distribution function o(r)
in a different way.

The intensity which we are able to determine experimentally from X-ray
diagrams is the total scattering; that is the sum of the coherent and the in-
coherent scattering.
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The intensity of the incoherent scattering ma,y be given by the expression
&l 1+ cos®2 0 1
inc = 2,4 D2 9 ) <9 3 ° ZatSat(s) (8)
Tad s 2 (1+ h(l—cosz@))
ucl

I

The theoretical basis for the determination of the function S, ,(s) has been
given by Heisenberg 12, and it is poss1ble to determine the numerical values of
this function for dlfferent atoms from a table given by Bewilouga 1.

1
(1 n h(1—cos2 9))3 represents the Breit-Dirac correction factor where 4 is
UCA
Planck’s constant. The summation in the last term in formula (8) is to be
taken over. all the atoms in the system.
The total intensity of the scattering may now be written:

Itotal(s) = 1(8) + Iinc =

[e e}

etl, 14 cos®20 l: f sin sr f gin sr
= . . Ve ——
p2c*R? 9 I : (1) or dr + | oyr)

+ Dalla+ (1+ k(ll s @)) ,,,(s»] (9)

uch

The last two terms in (9), representing the total scattering from all the iso-
lated atoms in the system, can easily be calculated, as both f, and S,,(s) are
tabulated for most types of atoms.

III. THE EXPERIMENTAL PROCEDURE

The X-ray diagrams for liquids may be obtained by an experimental
technique which is similar to the powder method used in X-ray crystallo-
graphy. The cameras and monochromators used by the different investigators
for the study of liquids are of various types. In the following a brief descrip-
tion of the equipment used at the University of Oslo shall be given.

Between the X-ray tube, which was of the Miiller Metallix type, and the
camera, a monochromator was inserted a considerable distance into the
camera. The distance between the focal spot of the tube and the sample in
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Fig. 1. Camera and monochromator.

the camera was only 8 cm. The different parts of the camera and the mono-
chromator are illustrated in Fig. 1. The X-ray beam passes through three
slits in the monochromator a, one between the tube and the reflecting erystal
and two between the crystal and the sample. The monochromatic beam was
the 200 reflection from a rocksalt crystal. The monochromator could be
adjusted for any wavelength between 2 A and 0.5 A. The diameter of the
cylindrical film was 57.3 mm and the film was held against the inner wall of
the camera b by a spring system c.

The specimen was contained in a glass or rubber tube, the walls of which
had a thickness of 0.02—0.01 mm. The diameter of the specimen ranged
from 1 to 0.3 mm, depending on the absorption in the sample. The influence of
the glass tube on the scattering could, in most cases, be neglected, but for
substances which absorb X-rays strongly, effects due to scattering from the
glass tube must be taken into consideration. This is also the case when rubber
tubes are used.

The density D of the blackening of the film was determined by a Zeiss
recording microphotometer, and the photometer reading, M, being transfor-
med to density scale by the logarithmic formula:

D= —log M + log M, (10)

where M, is the photometer reading for an unexposed spot on the film.
For small values of D, the connection between the total intensity of the
scattering, I (s), and D may be given by:

Iexp(s) = CID + 62 (ll)
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where ¢, and ¢, are constants. This formula is, however, only an approximation
and is valid only for a rather narrow range in I, (s).

Ia <Iexp(s) < Ib (12)

For I, (s) < I, formula (11) gives too large values of I, (s), and for I, (s )
> I, the values are too small. Thegeneral shape of the experimental intensity
curve of the liquids allows, however, an adjustment of the exposure time of
the film to the correct range in D. The experimental intensity curve shows
a main fall with incrasing s, and the magnitude of its maxima and minima
decreases rapidly with increasing s. If, therefore, a diagram of short exposure-
time gives too high values of the intensity for greater values of s compared
with a diagram of longer exposure-time, then the diagram of short exposure-
time is underexposed. If, on the other hand, a diagram of long exposure-
time gives too small values of the intensity for smaller values of s compared
with a diagram of shorter exposure-time, then the diagram of long exposure-
time is overexposed. It is thus easy to pick out the diagrams of correct range
in density D from a series of diagrams with different exposure-times. This
procedure is, without doubt, laborious and requires the preparation of a
considerable number of diagrams and photometer-records, of which a relativ-
ely large percentage must be rejected.

In order to increase the interval in s for which reliable observations of the
intensity are available and also to check the observed intensity, sets of dia-
grams are always taken with both monochromatic CuK,- and MoK -radiation.
The best diagrams are then picked out from each set and used as the basis
for the further treatment.

The reflection of the X-rays from the rock-salt crystal introduces a certain
polarization to the monochromatic radiation, and the polarization factor,
1 4 cos®20

- in formula (9) must be replaced by a factor

1+ kcos®2 @
Pls)= - (13)

where k = 0.937 for MoK,- and k£ = 0.723 for CuK,-radiation 4.

It should be remembered, however, that the radiation reflected in a given
direction from a fixed crystal is not necessarily monochromatic. Braggs for-
mula for the reflection from a crystal-lattice may be written:

2d sin O =n 4, (14)
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where 7 is a positive integer and d the distance between the reflecting planes
in the crystal. In our case, the rock-salt crystal in the monochromator was
set to reflect the desired wave-length 1, by the plane (200) through tke slit-
system. This setting of the crystal not only permits the passage of the radia-
tion with wave-length 1, through the slits, but also all the wave-lengths A,
which satisfy the condition:

A= — (15)

where » again may be any positive integral number. This means that the
wave-length 1, and all its ‘overtones’ can pass through the slits. The intensity
of the ’overtones‘ must therefore be suppressed as much as possible relative
to the intensity of the desired wave-length. This may be accomplished by
running the X-ray tube at the correct tension.

Powder diagrams of substances, the lattices of which are well known, may
be used for the control of the radiation. Lines originating from the ‘overtones’
may easily be spotted on the diagrams, as their position would correspond to
superstructures in the lattices in question. However, we have never been able
to observe such lines.

The absorption of the radiation in the cylindrical sample is compensated
for by introducing the factor A(s), which may be determined from tables
published by Blake 15,

The intensity of the scattered radiation which is observed experimentally,
I.,,(s) may be written according to formula (9) and (13):

e}

&tly sin, sr
Lagl®) = ~cage PO A@) | 3 | o0(r) = dr

(]

Q0
+ 0'1(7') sr r + Zal (fat + h(l—OOS2 0) 3 at(s)) ( )
o ()
el
From formula (16) an expression for the terms:
[ce]

[ee]
sin sr sin sr
ZMme(T) P dr + | or) -——— dr = L, i(8) (17)
0 0

sr
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may be deduced:

R . 1
L) = Lexsl®) T apisyd(s) — Do (ot + ( h(1—cos2 @)\s Sx(8) (18)
R

}zc}.

From formula (17) it is seen that the value of I, ,(s) must decrease rapidly
with increasing a. This again means that the two terms in formula (18) must
approach each other rapidly with increasing s. The second term:

1
B(s) = 2 (fa + ( "'k(f:ég‘s’éa)jy,sa(s)) (19)

may be calculated when the number of the different types of atoms or ions
contained in the sample is known. Introducing (11), the first term in formula
(18) may be written:

Co

B(s) = % D)) + 7 O (20)

where D(s) represents the blackening of the film and C(s) is given by:

_ MR 21
Cl8) = aap(syd(s) (1)

and may be determined when the experimental conditions are known. The
two constants, ;—: and ;_(21’ are given such values by a trial and error method
that the function E(s) coincides as close as possible to the function B(s) for
greater values of s. This operation is easiest to effect in the case of the experi-
mental blackening obtained by the MoK -radiation. The problem is some-
what more complicated in the case of CuK, radiation. In practice therefore the
MoK ;-curve is first adjusted to the function B(s) and then the CuK,-curve is
brought to coincidence with both the B(s) and the adjusted MoK ,-curve.

An investigation of the errors which may be introduced by this adjustment
has led to the conclusion that if the adjustment is carried out with care, the
errors are negligibly small. In the next part of this paper, this type of error
and a method for its removal will be treated in greater detail.
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Fig. 2. Two electronic distribution curves for an aqueous solution of phosphoric acid.
Curve A and B correspond to the intensity curves A and B in Fig. 3.

IV. A DISCUSSION OF CERTAIN SYSTEMATIC ERRORS

Both during the experimental procedure and as a result of the more theo-
retical treatment of the intensity curves, errors of different kinds may enter
into the results of the Fourier synthesis. Some of these errors, like the in-
fluence of the exposuretime on the form of the intensity curve, has already
been mentioned. Others, as for instance the influence of the film type and the
developing process on the intensity, are of a more general character, and have
therefore been treated thoroughly in publications on X-ray crystallography.

There are, however, some systematic errors which may ruin a Fourier
synthesis of the distribution function for a non-crystalline material.

The first type may originate from two different sources. It may be in-
troduced by an incorrect adjustment of the term E(s), (20) to the function
B(s), (19), and this in turn may be due to an incorrect exposure-time. The
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Fig. 3. Intensity curves visualizing the effect of various adjustments.

effect may also be caused by errors in the absorption factor, A(s). The second
of these two sources is certainly the more common.

The effect on the function I, (s) is the addition or subtraction of a term
which is equal to nought for s equal to zero, reaches its greatest value for s
equal to 1—2 A7l where the intensity curve generally has its greatest peak,
and decreases uniformly to zero with increasing s. The Fourier transformation
of such a wedge-shaped term gives a function which has its greatest maxima
and minima at smaller r-values, generally at 0.3—1.0 A. In this region neither
d,(r) nor g,(r) can have any maximum or minimum.

The influence of an incorrect adjustment of the MoK,- and the CuK -
intensity curves has been demonstrated in a work published in 1944 7, where
overexposed MoK,- and underexposed CukK,-diagrams from aqueous phos-
phoric acid are used as an example. In Fig. 2 two distribution curves for an
aqueous solution, containing 86 9, phosphoric acid, are given, and the corre-
sponding intensity curves are shown in Fig. 3. These two intensity curves are
the results of two adjustments which, as will be seen, differ greatly from
each other. It should be noted that the position of the maxima is not shifted
in the direction of the r-axis by the various adjustments. Their magnitude, or
their position in the direction perpendicular to the r-axis, shows, however, a
great variation from one case to the other.

Debye and Menke, in their pioneer work on the structure of liquid mer-
cury 3, determined a probability function, W(r), which is not identical with the
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Fig. 4. Debye and Menkes probability function for liguid mercury.

distribution function, ¢(r). It is, however, derived from the intensity of the
coherent scattering by a Fourier-transformation, which differs only slightly from
the one by which the-function o(r) is determined. The functions W(r) and
o(r) for the same substance have therefore many common properties and are
subject to the same types of errors. In Debye and Menke’s probability function
for liquid mercury, a spurious maximum is observed at about 0.6 A, and ascribed
by the authors to errors in the intensity function for greater values of s. This
spurious maximum may, however, be explained as due to the addition of such
a wedge-shaped term to the intensity function. That the maxima observed at
5.5 and 8.5 A in the W(r) function may also arise from the same wedge-shaped
term is not inconsistent with this explanation 7.

The occurrence of spurious maxima and minima at small values of 7 in
the distribution function indicates very strongly the presence of an erroneous
wedge-shaped term in the function [, (s), and this again in general may be
traced back to an incorrect adjustment of the experimental intensity curve or
an error in the absorption factor A(s). The inner part of the o(r) curve should
therefore be examined very carefully, and subsidiary maxima and minima in
this part of the curve should always be taken into account.

The error in the absorption factor, which, as stated above, is the most
common source of the wedge-shaped term, may be due to certain theoretical
and experimental causes. Of these the most probable is perhaps the fact that
the distribution of the intensity in the cross-section of the beam from the
monochromator generally fails to meet the requirements of the theory. In the
theoretical treatment it is assumed that the specimen is irradiated by a
parallel beam of X-rays with constant intensity throughout its whole cross-
section. A beam reflected from a plane crystal does not fulfill this require-
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ment, as the intensity in a reflection from a crystal always decreases towards
the edges.

The Fourier transformation in (2) requires that the intensity of the scatter-
ing be known from s =0 to s = 0 The experimental intensity curve is,
however, only known between the limits s = @ to s = b. The value of @ and
b are, in general, of the magnitude @ = 1 A1 and b =~ 12 A, When the upper
limit of integration in (2) is changed from infinity to b, certain errors are
introduced in the distribution functions. This error is of the same type as the
diffraction effect met with in the Fourier synthesis of crystal lattices. It has
been demonstrated by Bragg and West ¢ that its influence may be reduced
when the intensity is multiplied by a function e**. Unfortunately this proce-
dure also reduces the resolving power of the method. The reason for this is
simply that the function e~#" decreases rapidly with increasing s. Accordingly,
it reduces the influence of the intensity on the distribution curve with increas-

ing s, and this means a reduction of the resolving power. Warren, Gingrich

1
and others 517, on the other hand, multiply the intensity curve by a factor 72:
which increases rapidly with increasing s. The resolving power of the method
is in this way increased considerably, but the increase in the diffraction error

1
caused by the factor - has proved to be a great disadvantage, and may, as

I

will be shown by a few examples, lead to serious difficulties in the inter-
pretation of the experimental distribution curves.

The errors introduced in the distribution functions, when the lower limit
of integration is changed from nought to @ is not easily dealt with. Some
estimate of its magnitude may be obtained by drawing two curves connecting
the inner part of the observed intensity curve and the I(s) axis. The two curves
should be drawn in such a manner that one of them represents a probable
upper limit of the intensity curve in this region, and the other represents the
corresponding lower limit. The integration in the Fourier transformation is
then carried out, using both the upper and the lower of the two curves. In
this way two distribution curves are obtained, and the difference between them
should represent a fairly good estimate of the magnitude of this error. For
greater interatomic distances this procedure may prove less expedient, but for
distances up to about 10 A the method may be used safely.

In the following section some experimental results will be given, and, at the
same time, some examples of the different kinds of errors discussed above
will be shown. A more detailed discussion of the diffraction error, and its
influence on the different types of distribution functions, is given by Viervoll ®.
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SUMMARY

The theory of the scattering of monochromatic X-rays by a liquid is given
and some details of the experimental method used at the University of Oslo
for determination of electronic distribution functions are described. Some of
the more common systematical errors are also discussed.
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