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On the Thermodynamics of ’.-Transitions’

JORGEN KOEFOED

Universitetets Fysisk-Kemiske Institut, Kobenhavn, Denmark

he discovery by Keesom and his collaborators of what they named the

A-point of liquid helium, caused Ehrenfest ! to put forward a thermodynamic
theory of the transitions of the second order, characterized by discontinuity
in the second derivatives of Gibbs’ free energy, viz. in specific heat and coeffi-
cient of thermal expansion, but continuity in the first derivatives, S and V,
the latter in contradistinction to the ordinary phase transitions, which are
then called first order transitions.
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Fig. 1. The original measurements by Keesom and Keesom of the heat capacity of liquid
He between 1.2° and 3° K. The heat capacity under the pressure of the saturated vapours,
Cs, 18 given in callg - deg.
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It is obvious that the second order transitions will show no phenomenon of
two co-existing phases, and it was also pointed out at an early stage 2 that it
was not permissible to regard them as occurring between two different phases
each of which had fully continuous properties because an elementary calcula-
tion shows that the same phase would then be the more stable on both sides of
the transition point. It is necessary, therefore, that this phase simply ceases
to be physically defined, 4. e. ceases to have even a theoretical possibility of
existence when the transition point has been passed.

In his latest exposition of the theory,3 Keesom seems to underestimate the rigour of
this condition and tries to draw analogies to the possibility of experimental realization
of unstable phases near ordinary transition points. The metastability of superheated or
supercooled liquids, however, is easily explained by the fact that the liquid, though
instable towards a macro-phase in a gaseous or solid state, respectively, is stable towards
small germs of the same. Such ’germs’ are therefore formed and dissolved continuously
until one of them happens to grow beyond the critical size and becomes capable of
forming a true germ for starting the growth of the stable macro-phase. The melting
process, presumably, always finds imperfections on surfaces and interfaces where it can
start without any such obstacle, and the only chance of establishing a superheated
crystal is probably in working with perfect single-crystals, and no such work has hitherto
been reported. But what is relevant in this connection is only that irrespective of its
impracticability, the superheated crystal has perfectly well defined and continuous
thermodynamic functions. The whole discussion is therefore entirely irrelevant to the
problem of the second order transition.

Bridgman ¢ has proposed a model of the thermodynamic discontinuity. He considers
an order-disorder transition, and if the conventional conception of the same is used, his
argument should read: At the transition point the disorder is complete, and the degree
of order parameter equals zero. The disordering process cannot proceed further than to
complete disorder, and the degree of order cannot be less than zero. Hence the prolonga-
tion of the free energy curve of the phase of progressive disorder does not correspond to
any physically possible states. This pseudo-phase together with an always completely
disordered phase, forms the two ’phases’ between which a second order transition in Ehren-
fest’s sense can take place, although the free energy curve of the former may be the
lower on both sides of the transition point.

Against this two arguments shall be given:

1. In many of the known order-disorder transitions there exists all through the
transition interval a carrying lattice which makes it possible to distinguish unmistakably
between ’right’ and ’wrong’ atoms. Negative degree of order then has the well defined
physical meaning that more atoms are in wrong than in right places. Even in cases where
a carrying lattice is not present, it is only a matter of convention to assign to a negative
degree of order the same meaning as that of the numerically equal positive value.

2. The ’A-curves’ have tails. Above the transition point, the heat capacities in most
of the investigated cases still have extraordinary high values, which are falling off with
temperature. If we do not want to complicate our conceptions by assuming this to be
some separate phenomenon, we must assume that the process, be it a disordering process
or whatever else that goes on in the transition interval below the A-point, does continue
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also above the latter, though at a much smaller rate. Hence the internal parameter, be
it the degree of local order or something else, cannot have reached its ultimate value at
the A-point proper.

It can be stated, therefore, that so far no satisfactory model of the pseudo-
phases of Ehrenfest’s theory has been given. But quite apart from that, it is
important to bear in mind that the background for an introduction of pseudo-
phases is in fact a dislike of discontinuities, which causes a search for an ex-
planation of the A-discontinuities by analogy to the theory of ordinary phase
transitions in some transition between ’phases’ which themselves have con-
tinuous properties. As this is impossible because, as we have seen, at least
one of these pseudo-phases must possess some discontinuous properties, the
whole introduction of such pseudophases, whether explicit or implicit, seems
to have lost its point.

The same is true, of course, if, as is by far the most probable thing, the
A-curves of heat capacity efc. are not discontinuous in a strictly mathematical
sense but only have an extremely steep peak. Then there is no discontinuity
to explain away.

In the following treatment, therefore, we will approach the problem in a
rather different way by considering the analogy to systems of two components
and one phase, instead of to those of one component and two phases.

Discoveries in recent years have shown that very many pure substances
are in fact equilibrium mixtures of isomeric or polymeric modifications 5.
It is possible to regard such substances as mixtures of pseudo-components
and to treat them thermodynamically as such,* regardless of whether there is
or is not any possibility of preventing the immediate attainment of equilibrium,
and thus of experimental demonstration of the difference between the com-
ponents. This in spite of the fact that in a phase-rule sense the systems are of
one component only.

The partition function 8 of a mixture of the isomerie, chemically different compounds
A, B, C.... in equilibrium with one another, is the sum of the partition functions of
the components:
f=fa+iB+fc+-..

* Tt is a matter of course that analogies to the theory of mixtures will be elucidating only if
drawn to correct interpretations of the entities. A recent paper by Tisza (Phys. Rev. 72 (1947)
838) calls forth the following remark: The osmotic pressure of a solution is the pressure under
which its solvent component would be in equilibrium with the pure solvent, and it has no simple
kinetic interpretation. Unfortunately -— from a pedagogical point of view — is it for ideal solu-
tions numerically identical with the pressure which the solute molecules would have exerted if
they had occupied the same volume in the ideal gas state, but they do not by any means actually
exert it, neither on a wall nor on a semi-permeable membrane (added in proof).
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and the partition function of a component is defined:
fa=2 wy- e~Er/kT
L4

molecules of the species 4 being able to exist in the degenerate quantum states r, each of
the energy & and with the weight factor w,.

Now, if for a compound 4, in the pure state or in & mixture, we can divide the possible
states into groups #, 7/, #'”/ ... by some physical criteria, we can also split up the par-
tition funection accordingly:

fa=f +M +H"+... . =Z2+Z+Z2 +...=2%
,I

o1 grrr ,

expressing it as the sum of the partition functions of the subspecies A', 4”, 4" ...
in exactly the same way as the partition function of all the interconvertible isomers is
the sum of those of each of the components. As all the thermodynamic functions can be
derived from the partition functions, we thus arrive at the conclusion that it is permissible
to regard a chemically pure substance as a mixture of several components in equilibrium
and to treat it as such according to the usual thermodynamic theory of mixtures, provided
that the molecules of each of the pseudocomponents are unambiguously distinguishable
from those of the other by some physical criterion.

In some way this result is quite obvious as the statistical and thermodynamic treat-
ment cannot depend on whether the physical difference between two sorts of molecules
is of such a kind that it is macroscopically recognizable, e. g. by different optical rotatory
power, or whether it is only a difference in quantum state.

What makes it somewhat obscure at first sight, however, is the well known »Gibbs’
paradox». But the pertinent offence against the laws of thermodynamics is committed
only if the difference between molecules belonging to different components is not un-
ambiguously defined because then the enumeration of states goes wrong.

On this basis it is now remarkably easy to describe the A-transition and
several related phenomena in such a way that analogies and contrasts are very
clearly visualized.

Consider some compound or element which can have its atoms arranged
in say two different ways. We may think of para-orto hydrogen, monocline-
rhombic sulphur, monomer and trimer sulphurdioxide, solid nitrogen with
rotating and non-rotating molecules, alloys with ordered unit cells and cells
with some of the atoms inversed, or whatever we like, if only the difference can
be unambiguously defined.

In principle we shall be able to put down a partition function for each of
the two different components in pure state and to draw curves of their free
energies as functions e. g. of temperature. The interesting part of these curves
will be where the distance between them is near to or smaller than RT. If
the two components are unable to mix in that interval, we observe the familiar
phenomenon of a transition point where the free energy curves intersect, and
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Fig. 2 shows the rough shape of the curves in four cases with different kinds of miscibility
of two pseudo-components: 1) Free energy as function of temperature and compared with
the free energies of the *pure components’. 2) For a chosen temperature T*: the free energy
with varying mole fraction a. 3) Cp versus T. 4) The equilibrium mole
fraction, &, versus T.

where two phases, each consisting of a pure component, are in equilibrium.
All thermodynamic functions except G change discontinuously here, while in
all other points they vary quite smoothly.

If the two components are partially miscible, we shall get the same kind of
transition point, but in its neighbourhood we shall observe an abnormally
great heat capacity and perhaps other signs of a pre-melting like behaviour.
The greater the mutual solubilities are, the more pronounced is the effect, and
the less is the relative magnitude of the heat of transition proper. The miscibil-
ity may of course be one-sided, so that only one of the components is detect-
ably soluble in the other.

If, on the other hand, the two components form 1deal or nearly ideal mix-
tures, the equilibrium state will contain a smoothly increasing fraction of the
high energy component, and the specific heat curve will show the sort of rise
that is characteristic of intervals where molecules take up energy correspond-
ing to a hitherto unexcited degree of freedom.
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But if, eventually, the components are completely miscible, though with
great deviations from ideality, then we can get the ’A-transitions’. The activ-
ity coefficient of the solute component rises steeply with concentration, so
that this component only appears in any appreciable fraction quite near to
the temperature at which the G-curves intersect. Within a narrow range of
temperature then, the two components will change their réles as solvent and
solute. The heat of transition from the one nearly pure component to the
other is smeared out over the same interval and appears as the abnormal
specific heat. If the great deviations from ideality do not extend to the
whole range of concentrations but only to a certain interval, the above con-
siderations will apply to the transition through this interval.

To investigate what kind of singularity we may expect to find in the
thermodynamic functions, we will briefly consider a few of the relevant
equations.

One mole of A consists of @ moles of 4’ and (1—e) moles of A”. Gibbs’ free
energy is:

G=ay + (l—a)p’

and the condition of internal equilibrium is:
G
(a_a),f W—n=0  or  p=pfora=§

26 28 98 (2¢
Cp=— T(a—Tz)p,eq - T{(9T>p,§ + (9 a>”’T(9T>P’J

and the only term that may be expected to cause singularity is 6£/67. To
derive an equation for this we write:

9 G "9 (2@ 3 (3G 2 (3G
d(ﬁ) = (5‘) dp + 3_T<5—> T+ 5 (7) da

and obtain:
2§\  P0/0edT  (28)pa)yr S8
0T} s *Qloa®  (9*G ey, (9*Gde?), ¢

A singularity, therefore, will occur if 9*G/Je? equals zero, which condition
means that the two components form a critical mixture, as is easily verified
by a glance at Fig. 3. In this particular problem JG/da equals zero as stated
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Fig. 3. The molar free energy, G, of a binary mixture and the chemical potentials of the

components versus mole fraction, a, in case of 1) partial miscibility and 2 ) critical misci-

bility. In our particular case of chemical equilibrium between the ’components’ the four circled
potnts will fall in one, in which all the three curves will have horizontal tangents.

above, and for critical mixtures in general 72G/de? = 7°Q/do® = 0 if « is taken
to mean the mole fraction of a component in general.
A similar singularity will then occur also in the expansion coefficient:

VN (VN (VN (aE
(3T)p,eq_ (9T)p,§ - (9 a)p,r (aT)P,eq

and in the compressibility:

Go)n= G5t G, o)
2P)r. \0P/)re 2a/15\9 P/ 1,4

where
3_5 . P*G|Ipoa _ 2V [3a)r »
7 P T,eq o 920/3(12 o (aza/aaz)l',p

If we have an example of a phase transition with a very high degree of
pre-melting and pre-crystallization, as, according to the work of Ubbelohde 7, we
may expect to find for the melting of pure high paraffins, and if we imagine
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this degeneration of the melting point to proceed still further by increase either
in pressure or in chain length, the partial miscibility of the components may
reach the critical mixing point at a certain stage, and we shall see no more
separation into two phases. The heat of transition will have degenerated to a
singularity in the C,-curve, which according to the above derivation will
show a steep peak rising sharply to infinity from both sides. But as soon as
the degeneration proceeds further, and the miscibility, though still far from
ideal, is no longer critical, then the C,-curve will become continuous, although
preserving a possibly very steep peak.

The possibility of a critical point for the solid-liquid phase equilibrium
was much discussed in classical thermodynamics 8, and it seems likely that
under favourable conditions it may be realised in a manner like this. But so
far we do not know the true characteristic difference between the molecular
states in the liquid and in the solid states, and therefore we cannot say whether
phenomena like those described by Ubbelohde 7 do correspond to a real
‘miscibility of states’ or whether the molecules can acquire only some and
not all of the characteristics of the states of the other phase.

It is clear, however, that it calls for rather special assumptions for a transi-
tion of this kind to be realised in more than a point, viz. for instance that in a
pressure interval 73GQ/)pjat = (52 V/9e?), r = 0. The C,-curve for the A-transit-
ion of liquid helium as it is known to occur in the interval 0—25 ats. therefore
must be supposed to be continuous however steeply it rises.

On the whole, it can be said that when we cannot observe the degeneration
from two phase transition through critical transition to A-transition, it will
practically never be possible to decide definitely that a true discontinuity does
occur. And anyway, in circumstances differing only infinitesimally, the dis-
continuity will no longer occur in a strictly mathematical sense, although the
physical appearance will be practically indistinguishable. It seems the most
reasonable thing, therefore, to give up the concept of second order transitions
and to speak only of A-transitions and critical A-transition.

This whole treatment is of course of a very formal and descriptive character,
as is the thermodynamic treatment of mixtures to which it relates. Only in
combination with statistical mechanics under the assumption of some physical
model will it attain any explanatory value, and only then will it be of interest
to evaluate further the given formulae. But as pointed out by Keesom 3

. , . P AC
himself, K eesom - Ehrenfest’s equation iT = TV A,
regardless of the kind of the singularity, if only AC, and Ae, are taken as
the increments in the same small temperature interval.

will preserve its validity
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As regards the order-disorder transitions the very difference between
Bragg-Williams’ treatment and that of Bethe is in the different interaction
between cells of the two different kinds. This, in connection with the present
treatment, stresses the fact that what does determine the kind of a transition
is the mutual interaction between molecules or cells of different kinds. The
relative energy and free energy of each kind in the ’pure state’ will determine
only the range of temperature where it occurs. Hence it is a pronounced co-
operative phenomenon.

The nature of the known A-transitions in crystals being fairly well ac-
counted for by the order-disorder description, the only known A-transition in
liquid phase attracts the greater interest at present. Several models of the
helium transition have also been proposed, but we will reserve the discussion
thereof for a separate paper.

Only as an illustration to this treatment, however, we shall briefly describe in the
language used here one model which is compatible with the thermodynamic properties of
He II, though not directly with the kinetic ones.

We assume for ordinary liquid He a structure corresponding to a coordination number
12 and with a number of nearest neighbours z ~ 11. Ordinary liquids would at some
sufficiently low temperature pass over in a crystalline state of the same coordination
number, but for He at not too high pressures another structure of some lower coordination
number, say 8 (or 6), must be assumed for some reason or other to be more stable, 7. e.
to be of a lower free energy. How the transition between this last mentioned state and
the liquid will take place now depends not on the energies of a He-atom in the two states,
but on the energy of an atom with a number of nearest neighbours in between, say 9 or
10. We may consider the two states as pseudo-components distinguished e. g. by the
He-atoms having numbers of nearest neighbours z, a) equal to and b) greater than 8
(or 6) respectively. If now the energy of an atom varies linearly with 2, the two com-
ponents, if obeying Boltzman statistics, will be ideally miscible, and even in the case that
quantum statistics must be applied, the deviations from ideality will not be large enough
for a transition point to be detectable.

But it may be that for any such intermediate value of z the energy is much higher than
vhat corresponding to the two states, e. g. if an interaction peculiar to the state of low
coordination number is responsible for its stability. That will cause a clustering of the
atoms of low coordination number into some kind of crystallites, and any degree of
deviation from ideality may arise therefrom.

The model very much recalls Bernal and Fowler’s model of liquid water and on further
consideration of it, it becomes easy to understand how a model as that by Keesom and
Gorter 3 of the two-phase system in an opaque vessel of constant volume may well picture
the crude features of a A-transition. When the deviations from ideal miscibility are
almost large enough to cause a phase separation, the transfer of atoms from the crystal-
lites to the ’serum’ takes place almost as the transfer between two defined phases. But
just in the interesting point of ’transition’ that important difference appears, that the
crystallites will disappear continuously though perhaps rather quickly with rising tem-
perature, while the discontinuity is characteristic of the model system because it is really
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of two phases and hence can be realised in a temperature interval only because the
volume is kept constant. Gorter and Keesom’s model, therefore, does not really bridge,
as it is meant to, the gap between continuity and discontinuity.

This result does not depend upon the details of the model here assumed, but it will
undoubtedly come true by any model which duly takes into account that there is always
only one real phase.

SUMMARY

The degeneration of ordinary phase transition is exposed by close analogy
to the theory of mixtures. Ordinary phase transition corresponds to no
miscibility of molecules in the two states characteristic of each of the phases;
pre-melting and analogous pbenomena mean partial miscibility, and to full
but non-ideal miscibility, anomalies which appear as humps on the heat
capacity curve efc. correspond, in pronounced cases giving rise to ’A-transi-
tions’. Only in case of critical miscibility the transition becomes a true second
order transition in Ehrenfest’s sense.

It is shown by statistical arguments that such a splitting up into two
pseudo-components and treatment of these as ¢omponents.in a mixture can be
effected without inconsistencies.
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