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Electron Diffraction Investigations of Molecular Structures

I. Application of Fourier Analysis to the Rotating Sector Method

H. VIERVOLL*®

Universitetets Kjemiske Institutt, Blindern — Oslo, Norway

In the present paper we shall deal with the theory of electron diffraction in
gases and of a method for the determination of molecular structures from
diagrams obtained by the sector method. In a subsequent paper ! the results
will be given for determinations of about 40 molecular structures which have
been carried through by this method. The apparatus used was completed and
the method of interpretation worked out at the beginning of the war. The
method has now been used in our laboratory for some years and a series of
minor modifications have been introduced. Parts of the theory and the
results have been published previously in Norwegian periodicals. As these
papers, however, are not easily accessible in other countries we shall give a
survey both of the method and the results.

THE BASIC THEORY

In this summary we intend to follow chiefly a paper by Finbak.? Parts
of the theory will be discussed more thoroughly elsewhere.?

The diffraction of an electron beam by a point charge of ¢ elementary
units may, according to Gordon,* be written

I, [8752 me] 2 Mg ¢
¢ Re h2 (47 sin 2)4 - st

I (li

* The author wishes to express his gratitude to Dr Chr. Finbak and Professor O. Hassel
for giving him the opportunity of working with them in this field, and to Fridtjof Nansens
fond and Statens Forskningsfond for financial aid.
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Where
I, = intensity of the primary beam
B = distance between the diffraction point and the point of obser-
vation
m, ¢ = mass and charge of an electron
h = Planck’s constant
h

A= o wavelength of the electrons in the beam
0

vy = the velocity of the electrons
4n @
§= sin 2 is used as variable instead of the scattering angle ¢

The coherent scattering from a freely rotating system of point charges g¢,,

the mutual distances of which are given by r,, is then, according to Debye 5
and Ehrenfest.6

sin 87‘

K
I(s) = 5 22 gy (2)

ST

If the two charges g; and g; are altering their mutual distance during the time
of observation, the mean intensity is given by

sin sr

I(s) = 5 f IE 40,94 (1) dr 3

The value of p; (r) dr represents the probability of these two charges having
a mutual distance in the interval from r to r - dr.
Eq. (3) may be written

sin sr (4)

K
I(s) == or(r)
0

where o () dr is twice the probability for any two charges in our system having
a mutual distance between r and r 4 dr. For a neutral system we have

oo

o (r)dr=£X g.q;= (£9)* =0 (5)

(o]

The connection between the probability function ¢(r) and the density .
function D(7)7 is given by the equation:
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a(r) = 4= D(r) (6)

Applying the function ¢(r) to actual systems we may assume that every
volume element dv possesses a number of charges corresponding to odv
" where g is the charge density. We then have the following well known equation
for the coherent scattering by a rigid system of spherical atoms

sin sR,.,.]

7
i, ™

1,(s) = :_S[Z(ZF‘F.')Z + 22X (Z—F,) (Z—F))

Here the F; (s) is the atomic scattering functions for X-rays and R, is the
distance between two nuclei. The sums must be taken over all the atoms in
the system for which ¢ 5= j.

For the coherent scattering by a single atom eq. (7) gives

I.(s) =§4 (Z—F,)* (8)

Mott 8 has discussed the atomic scattering, employing wave mechanics,
and finds that eq. (8) is valid when the energy of the incident electrons is
greater than the binding energy of the K-electrons in the atom by which they
are scattered. We then may assume that eqs. (4) and (7) also are valid under
the same conditions.

Eq. (7) may now be written

L(o) = | 22, F)2+/ (n " ] ©

where o,, () dr is twice the probability of finding charges belonging to different
atoms at a distance between r 4 dr apart. Adding the incoherent scattering,
the total intensity may be written

K - sin sr
I(s) = 8—4[2((21.— )+ S +ﬁm (r) dr] =1I,(s) + I,(s) (10)
o

Using Fourier’s integral theorem we have

o, (r)—~/ m(—)s5 sin sr ds (11)
0
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Fig. 1. Theoretical distribution curves without diffraction effects NV
for a diatomic molecule.

The function ¢,(7) may be written
O (1) =Z%" 04 (1)

where ¢,; (r) depends solely on the charge distribution in two atoms ¢ and §

and the distance R, between their nuclei. Fig. 1 gives the function g, (7)

for two oxygen atoms oscillating about the equilibrium distance 1.2 A and
o (1) a; (1)

darr * r °

the corresponding curves D, (r) = nd

It may be proved that the function is symmetrical with respect to

the line r = Ry;, a property which is not shared by the function o, () or D;; (7).
a;i (1)

The function "T should therefore be more suitable than the other two for

the determinations of molecular structures (3). According to eq. (11), the func-

takes the form

- <]
2 rI
In (7) = ;Jlf(@ s5 sin sr ds | (12)

tion

r

I, (s
The function '"K() must be determined experimentally, and this may be

done by the rotating sector method described below.

THE EXPERIMENTAL TECHNIQUE

It is a well-known fact that a photometric record of an ordinary electron
diffraction diagram gives only meagre information regarding the molecular
scattering I, (s). This is due to the form of the intensity curve I,(s)
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Fig. 2. Electron diffraction apparatus for
gases.

which falls off very rapidly with increasing values of s. In order to obtain
diagrams on which the blackening is more equally distributed over the
whole range of the film, a sector of suitable form may be rotated in front of
the photographic plate during the exposure. The sector must have a form
such that its screening effect decreases with increasing values of s. The appli-
cation of such a sector was first proposed by Finbak® and later by Debye.10

Fig. 3. The rotating sector in its place above
the photographic plate.
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Fig. 4. Photometric record of a sector diagram (benzene)

The diffraction apparatus used in our laboratory, shown in fig. 2, has been
described elsewhere.l! A description of the apparatus will therefore not be
given here, but some details concerning the rotating sector should be men-
tioned. This part of the apparatus is shown in fig. 3. The sector itself is rotated
with the incident beam as an axis. Different forms of sectors have been tried,
their screening effects being proportional to s7%, s72 and 73, Experience shows
that the sector having the factor s is most suitable and this sector has there-
fore been used almost exclusively in our laboratory. Fig. 4 gives photome-
tric record of a sector diagram of benzene. The maxima and minima of the
curve are very conspicuous and the curve is well suited as a basis for the de-
termination of the structure.

The most strightforward way of determining the I, (s) function would
appear to be the procedure used in the case of X-ray investigation of liquids,!?
but in the case of electron diffraction this method has not been successfull.
We therefore adopted a different procedure originally proposed in a slighitly
modified form bv Finbak.3

The terms I,(s), I,(s) and I, (s), defined above, correspond to the inten-
sities of the scattered beam before it strikes the rotating sector. Let I,'(s),
I,'(s) and I,(s) represent the same intensities after passing the sector and
P,(s) the ordinate of the photometric record. In fig. 5 the curves I,'(s), I,'(s)
and P,(s) are drawn with a common s-axis, the scale of which has been cali-
brated from gold-foil diagrams. In the same figure we have given the function
P,(s), defined by the equation :

L(s) _L(s) _Pi(s) R,
L) L() Ps) =~ -
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Fig. 5. The correction of the photometric record.

From eqgs. (7), (10) and (13) follows that the function

Im (8) _ Pt (8)
1, () P () ! (14

sin x
consists of a sum of modified Y functions. For a sufficiently great inter-

val of s the mean value of this function is near to zero. Our experience indi-
cates that it is possible to make a reliable determination of the curve P,(s)
by applying these relations. A further control of the curve may be established

P, (s
by assuming that the curve I—“,—% shall be of a smooth form. Lastly it may

be mentioned that rather large modifications in the values of the function

Om

P, (s) have been found to produce very small alterations in the curve

G, (1
for r>1 A. For r <1 A, however, the form of the _r_(_) curve depends to

6, (1)

some extent on the values of P,(s), but the part of the —lr— function be-

tween r = o and r = 1 A. is of practically no consequense to the structure
determination.

P, (s
With the values of P‘ ;s y obtained in this way we may calculate the values of
1, (s) [Pt (s) ] [ ]
5 — — . — F.)2 )
K 8§ = Pa (8) 1112 ((Zl Fo) + Ss) s (15)

if the functions F; and S; are known. These functions have been calculated
by James and Brindly 4 and Bewilogua !5 for s values smaller than s = ca 14.
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Fig, 6. Experimental 6, (r) curve of a
diatomic molecule.

For our purpose we have extended the calculations of the F; and §; functions
to ¢ = 30. These values will be published separately.
The experimental intensity curves may be obtained only for a limited in-

terval of s between s; and s,. This means that the function In(7) of eq
(12) has to be replaced by the function r
83
ou(r) 2 (1, (s)
L)V s
- - K S sin s ds (16)

8y

The computation of this function is carried out in our laboratory with
the help of sin sr tables, the intervals of which are A s = 0.25and A r = 0.0698 A,
The limits s, and s, depend on experimental conditions and are generally s, =
3 and s, = 20 or 22 when the field accelerating the electron beam is about
33 K. V.

THE INTERPRETATION OF THE EXPERIMENTAL CURVES

Fig. 6 shows the ¢, (7) curve of a diatomic molecule (I,) determined ex-
perimentally from eq. (16). The difference between this curve and the theo-
retical curve o, (r) in fig. 1 is rather remarkable. As pointed out by Finbak?
this difference is undoubtedly caused by the fact that the experimental curve
gives the integral from s, = 6 to s, = 16.5 while the curve of fig. 1 corresponds
with the integral from 8, = o to s, = oo. The systematic errors thus intro-
duced in the experimental g,, (7) curves may be called diffraction effects, as
first proposed by Bragg and West® in the case of Fourier-analyses of X-ray
diagrams from crystals. It should be pointed out, however, that in the case
of electron diffraction this error is much more pronounced on account of the
great influence of the nuclei on the scattering process.

The interpretation of the experimental o,, (r) curve may be based on the
fact that every distance between two nuclei of the molecule gives a maximum
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Fig. 7. (a) Experimental o, (r) curve of
CBry. (b) Theoretical o, (r) curve with
1 diffraction effects for the Br-Br distance.
H -4 2 3 4 5 A (¢c) Experimental o (r) curve of CBr,.

on the curve, the magnitude of which is approximately proportional to the
product of the atomic number of the two nuclei. In addition to this maximum

2
spurious undulations of period 5. are caused by the diffraction effects.
2

Better results may be obtained by varying the limits s, and s, in the integral
and thus altering the period of the diffraction error. In this way some mole-
cular structures have been worked out on the basis of o,, (7) curves alone.

In the case of complicated molecules, however, the interpretation of the
experimental ¢,, () curves very often seemed to be somewhat arbitrary be-
cause of the diffraction effects. Following a suggestion by Finbak 17, we may
then introduce a new function ¢ () defined by *

S
2 I, (s
o(r) = o —'fk(—) e §5 sin sr ds (17

&

The exponential factor e has the same influence on our curves as an in-
creasing thermal agitation and thus makes the diffraction effects less con-
spicuous. With suitable values of the constant k, we may compute ¢ (7) curves
the interpretation of which is more straightforward than that of the original
o, (r) curves. This may be seen from the fully drawn curves of fig. 7. Here
the constant k was chosen equal to 0.018, and the integration carried out for
the interval s, = 4.5 to s; = 17. The two r-values which correspond to inter-

.- * Originally this function was texmed g; (r) but for simplicity ¢ (r) is now generally used.
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atomic distances are indicated by arrows, the lengths of which are proportional
to the theoretical heights of the maxima.

The influence of the diffraction effects on the g, (r) curves may conve-
niently be studied by the use of so called »mormal curves».!® A combination of
eqs. (7) and (16) gives

(Z;— F;) (Z;— F,) sin sR,; sin sr ds (18)

0-7” (r) ’ [
L=z (Z,—F,) (Z,— F,) cos (R, —r) s ds
u 8,
—f(z,. —F,) (%,—F)) cos (R, + 1) s ds] (19)
8

The first integral in this equation has its greatest maximum at r = R, and
is symmetrical with respect to the line » = R,;. For r > o the second integral
has the same form as the first with » << 0. The form of the »normal-function»

g
/ (1 —%) (1 — %) cos ps ds (20)
8 7 i

for given limits s, and s, depends only slightly on the atomic numbers and
will be discussed more thoroughly elsewhere 3. If we use the function o (r)
defined in eq. (17) instead of the g,, ()-function, the normal curves are given by

S

/(1 — 2—,’) (1 — %) e cos gs ds (21)

i i
81

With the help of the functions (20) or (21) theoretical D (r), g,,(7), a(7)
o(r
or —i—) curves including diffraction effects may be easily computed for any
atomic distance and it is fairly simple to build up such curves for a whole
molecule or parts of it. These curves should show the same diffraction errors
as the corresponding experimental ones and may directly be compared with
them. The dotted curve of fig. 7 gives an example of such a ¢, (r) curve for
the Br-Br distance. Besides the true maxima at r = 3.1 A, the spurious ones
are found in close agreement with the experimental curve.
9
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Fig. 8. Normal curve

with diffrac-

n-R--2 -1 0 ! 2 A tion effects of a single interatomic distance.

In our laboratory both the o, (r) and the o (7)-functions have been em-
ployed for the determination of molecular structures.! By the introduction
of the exponential factor ¢ the influence of the experimental errors has
been reduced and in most cases a value of % equal to 0.01 was found to be

. a(r
suitable. Lately we have preferred to base our interpretation upon the —7(7—)
curves alone, as this function has the most convenient form for the application
of normal curves. Fig. 8 gives the normal curve of eq. (21) when the values
of the constants are k = 0.01 s, = 4 and 83 = 20. This curve corresponds

o(r
closely with the —g—) curve of a single interatomic distance, and may be

afr
compared with the —:-2 curves which have been worked out from the ex-

perimental data.

Some modifications of the interpretation technique which have been used
in our laboratory should also be mentioned. When the o (r) function was
introduced 18 it was pointed out that this function for a given system may
be split into two or more different parts. Each of these parts gives informa-
tion concerning smaller parts of the scattering system. According to eq. (19)
ou(r) (1) e . |

,  or —— may be written as a sum of functions each
belonging to a single interatomic distance. Upon these facts various types of
differential methods have been based.

If one or more interatomic distances are common to two molecules, the

9y (1)
r

the functions

ofr
experimental o,, (7), , or) or —g—z curves may be determined for

both substances. The difference between the two sets of experimental curves
may then give more information about other distances which are not common
to these molecules. Sometimes the difference may be taken between the ex-
perimental curve and a theoretical curve including diffraction effects for a
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certain number of distances in the molecule.’® In both cases the difference
curve will be less influenced by the diffraction effects and therefore yields
more accurate information about the structure. In many cases the differential
methods have made possible the determination of rather fine details in the
molecular structures as will be seen from examples given in the following
paper.

It must be emphasized that the methods described here demand intensity
measurements of high accuracy. These may be obtained by the sector method
described. Our experience is that these methods can give better results than
any of those based on visually estimated intensities. The best justification
of our methods seems to be satisfactory agreement between the experimental
curves and the theoretical curves for which diffraction effects have been taken
into consideration.

SUMMARY

The determination of molecular structures by use of the sector method is
discussed and the different forms of distribution functions introduced by
Fourier analysis are compared to each other. Because of the diffraction ef-
fects, the interpretation of the experimental distribution curves for compli-
cated molecules seems to be somewhat arbitrary. By the use of normal curves,
theoretical curves including the diffraction effects may be obtained for any
atomic distance. These curves may then be compared directly with the ex-
perimental ones when the structures are to be determined. For the determina-
tion of fine details in the structure different types of differential method are
introduced. The structures of about 40 molecules obtained by the sector me-
thod are given in a subsequent paper.!
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